Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Recent observations and simulations indicate that solar flares undergo extremely complex 3D evolution, making 3D particle transport models essential for understanding electron acceleration and interpreting flare emissions. In this study, we investigate this problem by solving Parker’s transport equation with 3D MHD simulations of solar flares. By examining energy conversion in the 3D system, we evaluate the roles of different acceleration mechanisms, including reconnection current sheet (CS), termination shock (TS), and supra-arcade downflows (SADs). We find that large-amplitude turbulent fluctuations are generated and sustained in the 3D system. The model results demonstrate that a significant number of electrons are accelerated to hundreds of keV and even a few MeV, forming power-law energy spectra. These energetic particles are widely distributed, with concentrations at the TS and in the flare looptop region, consistent with results derived from recent hard X-ray (HXR) and microwave (MW) observations. By selectively turning particle acceleration on or off in specific regions, we find that the CS and SADs effectively accelerate electrons to several hundred keV, while the TS enables further acceleration to MeV. However, no single mechanism can independently account for the significant number of energetic electrons observed. Instead, the mechanisms work synergistically to produce a large population of accelerated electrons. Our model provides spatially and temporally resolved electron distributions in the whole flare region and at the flare footpoints, enabling synthetic HXR and MW emission modeling for comparison with observations. These results offer important insights into electron acceleration and transport in 3D solar flare regions.more » « lessFree, publicly-accessible full text available September 29, 2026
-
Abstract Using our recently developed X‐ray diffraction basedforce constantsapproach, we have determined the equilibrium Si isotope fractionation between omphacite/garnet, quartz/kyanite, and quartz/zircon at temperatures relevant to the petrogenesis. We find that Na strongly affects the Si isotope fractionation between omphacite and garnet. Our results have suggested that the omphacite and garnet in eclogite collected in the Dabie Mountain, as well as the kyanite and its host quartz veins, are isotopically in equilibrium, which further suggests that the Dabie Mountain eclogites and its host veins underwent the same high pressure‐temperature condition during their formation. The Si isotope fractionation determined by our methods, together with published mass spectroscopy measurements, DFT‐CIPW calculations and sigmoid fitting on various felsic granites, have suggested that the Si isotope fraction between zircon and whole rock “saturates” at ∼0.45‰ at 1000 K when the SiO2content in the granite is above ∼70 wt%.more » « lessFree, publicly-accessible full text available April 10, 2026
-
Abstract Solar flare above-the-loop-top (ALT) regions are vital for understanding solar eruptions and fundamental processes in plasma physics. Recent advances in three-dimensional (3D) magnetohydrodynamic (MHD) simulations have revealed unprecedented details on turbulent flows and MHD instabilities in flare ALT regions. Here, for the first time, we examine the observable anisotropic properties of turbulent flows in ALT by applying a flow-tracking algorithm on narrow-band extreme-ultraviolet images that are observed from the face-on viewing perspective. First, the results quantitatively confirm the previous observation that vertical motions dominate and that the anisotropic flows are widely distributed in the entire ALT region with the contribution from both upflows and downflows. Second, the anisotropy shows height-dependent features, with the most substantial anisotropy appearing at a certain middle height in ALT, which agrees well with the MHD modeling results where turbulent flows are caused by Rayleigh–Taylor-type instabilities in the ALT region. Finally, our finding suggests that supra-arcade downflows (SADs), the most prominently visible dynamical structures in ALT regions, are only one aspect of turbulent flows. Among these turbulent flows, we also report the antisunward-moving underdense flows that might develop due to MHD instabilities, as suggested by previous 3D flare models. Our results indicate that the entire flare fan displays group behavior of turbulent flows where the observational bright spikes and relatively dark SADs exhibit similar anisotropic characteristics.more » « lessFree, publicly-accessible full text available April 25, 2026
-
Kung, Jennifer (Ed.)Abstract Raman spectroscopy is a rapid, nondestructive analysis technique used in various scientific disciplines, including mineralogy, chemistry, materials science, and biology. The analysis of Raman spectra and the identification of specific substances in unknown samples can be complex and time-consuming due to the large database of Raman spectra. The Raman Match application was developed to simplify and automate the sample identification process through a search and match method. The application integrates the well-established RRUFF Raman database with the Python programming language. It provides a user-friendly graphical interface to load Raman spectra, identify and fit peaks, match peaks to the reference libraries, visualize the results, and generate publication-ready figures. The application offers a swift and automated method for mineral identification using Raman spectroscopy in laboratory and field settings and during planetary exploration missions to extraterrestrial environments with constraints on time and resources.more » « less
-
We apply ultrafast nanoscale microscopic imaging and analytical modeling to investigate the coherent field and spin textures of dual plasmonic vortices as a means to design the momentum flow, and spin topology by interaction of their gyrating fields. The ultrafast laser normal incidence illumination by circularly polarized light of two vortex generator structures with variable separations in silver films launches structured surface plasmon polariton fields. Two distinct primary vortices and a third emergent vortex, generated by interaction of the primary vortices and tunable by design of their separation, form through the spin–orbit interaction of light. The gyration of plasmon fields and the consequent vectorial Poynting momentum flow is imaged with sub-optical cycle phase and spatial resolution by interferometric time-resolved two-photon photoemission electron microscopy (ITR-2P-PEEM). The ultrafast imaging and analytical modeling of the interaction of the dual plasmonic vortices examines the nanoscale control of plasmon spin topology and momentum driven transport.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Motivated by the recent success in using a latticed-based version of the aggregation-volume-bias Monte Carlo method to determine the thermodynamic stabilities of both bcc and fcc clusters formed by Lennard-Jones particles, this approach is extended to the calculation of the nucleation-free energies of solid clusters formed by urea at 300 K in two different polymorphs, i.e., form I and form IV. In addition to the lattice confinement, the constraint on the molecular orientation was found necessary to ensure that the clusters sampled in these simulations are in the corresponding form. A model that can reproduce the experimental properties such as density and lattice parameters of form I at ambient conditions is used in this study. From the size dependencies of the free energies obtained for a finite set of clusters studied, the free energies of clusters at other sizes, including an infinitely large cluster, were extrapolated. At the infinite size, equivalent to a bulk solid, form I was found to be more stable than form IV, which agrees with the experimental results. In addition, form I was found to be thermodynamically stable throughout the entire cluster size range investigated here, which contradicts the previous finding that small form I clusters are unstable from the crystal nucleation simulation studies.more » « less
-
Abstract Davemaoite (CaSiO3 perovskite) is considered the third most abundant phase in the pyrolytic lower mantle and the second most abundant phase in the subducted mid-ocean ridge basalt (MORB). During the partial melting of the pyrolytic upper mantle, incompatible titanium (Ti) becomes enriched in the basaltic magma, forming Ti-rich MORB. Davemaoite is considered an important Ti-bearing mineral in subducted slabs by forming a Ca(Si,Ti)O3 solid solution. However, the crystal structure and compressibility of Ca(Si,Ti)O3 perovskite solid solution at relevant pressure and temperature conditions had not been systematically investigated. In this study, we investigated the structure and equations of state of Ca(Si0.83Ti0.17)O3 and Ca(Si0.75Ti0.25)O3 perovskites at room temperature up to 82 and 64 GPa, respectively, by synchrotron X-ray diffraction (XRD). We found that both Ca(Si0.83Ti0.17)O3 and Ca(Si0.75Ti0.25)O3 perovskites have a tetragonal structure up to the maximum pressures investigated. Based on the observed data and compared to pure CaSiO3 davemaoite, both Ca(Si0.83Ti0.17)O3 and Ca(Si0.75Ti0.25)O3 perovskites are expected to be less dense up to the core-mantle boundary (CMB), and specifically ~1–2% less dense than CaSiO3 davemaoite in the pressure range of the transition zone (15–25 GPa). Our results suggest that the presence of Ti-bearing davemaoite phases may result in a reduction in the average density of the subducting slabs, which in turn promotes their stagnation in the lower mantle. The presence of low-density Ti-bearing davemaoite phases and subduction of MORB in the lower mantle may also explain the seismic heterogeneity in the lower mantle, such as large low shear velocity provinces (LLSVPs).more » « less
An official website of the United States government
